Model-Based Collaborative Filtering for Team Building Support
نویسندگان
چکیده
In this paper we describe an application of recommender systems to team building in a company or organization. The recommender system uses a collaborative filtering model based approach. Recommender models are sets of association rules extracted from the activity log of employees assigned to projects or tasks. Recommendation is performed at two levels: first by recommending a single team element given a partially built team; and second by recommending changes to a completed team. The methodology is applied to a case study with real data. The results are evaluated through experimental tests and one survey to
منابع مشابه
A New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation
Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...
متن کاملA NOVEL FUZZY-BASED SIMILARITY MEASURE FOR COLLABORATIVE FILTERING TO ALLEVIATE THE SPARSITY PROBLEM
Memory-based collaborative filtering is the most popular approach to build recommender systems. Despite its success in many applications, it still suffers from several major limitations, including data sparsity. Sparse data affect the quality of the user similarity measurement and consequently the quality of the recommender system. In this paper, we propose a novel user similarity measure based...
متن کاملIntelligent Approach for Attracting Churning Customers in Banking Industry Based on Collaborative Filtering
During the last years, increased competition among banks has caused many developments in banking experiences and technology, while leading to even more churning customers due to their desire of having the best services. Therefore, it is an extremely significant issue for the banks to identify churning customers and attract them to the banking system again. In order to tackle this issue, this pa...
متن کاملRecommender system based on workflow
a r t i c l e i n f o This paper proposes a workflow-based recommender system model on supplying proper knowledge to proper members in collaborative team contexts rather than daily life scenarios, e.g., recommending commodities, films, news, etc. Within collaborative team contexts, more information could be utilized by recommender systems than ordinary daily life contexts. The workflow in colla...
متن کاملQoS-based Web Service Recommendation using Popular-dependent Collaborative Filtering
Since, most of the organizations present their services electronically, the number of functionally-equivalent web services is increasing as well as the number of users that employ those web services. Consequently, plenty of information is generated by the users and the web services that lead to the users be in trouble in finding their appropriate web services. Therefore, it is required to provi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004